数学说课稿

时间:2024-01-10 11:19:18
【推荐】数学说课稿集锦5篇

【推荐】数学说课稿集锦5篇

作为一名为他人授业解惑的教育工作者,可能需要进行说课稿编写工作,说课稿有助于学生理解并掌握系统的知识。那么什么样的说课稿才是好的呢?下面是小编帮大家整理的数学说课稿5篇,希望能够帮助到大家。

数学说课稿 篇1

一、教材分析

1、教材的地位和作用:

数列是高中数学重要内容之一,它不仅有着广泛的实际应用,而且起着承前启后的作用。一方面, 数列作为一种特殊的函数与函数思想密不可分;另一方面,学习数列也为进一步学习数列的极限等内容做好准备。而等差数列是在学生学习了数列的有关概念和给出数列的两种方法——通项公式和递推公式的基础上,对数列的知识进一步深入和拓广。同时等差数列也为今后学习等比数列提供了学习对比的依据。

2、教学目标

根据教学大纲的要求和学生的实际水平,确定了本次课的教学目标

a在知识上:理解并掌握等差数列的概念;了解等差数列的通项公式的推导过程及思想;初步引入“数学建模”的思想方法并能运用。

b在能力上:培养学生观察、分析、归纳、推理的能力;在领会函数与数列关系的前提下,把研究函数的方法迁移来研究数列,培养学生的知识、方法迁移能力;通过阶梯性练习,提高学生分析问题和解决问题的能力。

c在情感上:通过对等差数列的研究,培养学生主动探索、勇于发现的求知精神;养成细心观察、认真分析、善于总结的良好思维习惯。

3、教学重点和难点

根据教学大纲的要求我确定本节课的教学重点为:

①等差数列的概念。

②等差数列的通项公式的推导过程及应用。

由于学生第一次接触不完全归纳法,对此并不熟悉因此用不完全归纳法推导等差数列的同项公式是这节课的一个难点。同时,学生对“数学建模”的思想方法较为陌生,因此用数学思想解决实际问题是本节课的另一个难点。

二、学情分析对于三中的高一学生,知识经验已较为丰富,他们的智力发展已到了形式运演阶段,具备了教强的抽象思维能力和演绎推理能力,所以我在授课时注重引导、启发、研究和探讨以符合这类学生的心理发展特点,从而促进思维能力的进一步发展。

二、教法分析

针对高中生这一思维特点和心理特征,本节课我采用启发式、讨论式以及讲练结合的教学方法,通过问题激发学生求知欲,使学生主动参与数学实践活动,以独立思考和相互交流的形式,在教师的指导下发现、分析和解决问题。

三、学法指导在引导分析时,留出学生的思考空间

让学生去联想、探索,同时鼓励学生大胆质疑,围绕中心各抒己见,把思路方法和需要解决的问题弄清。

四、教学程序

本节课的教学过程由(一)复习引入(二)新课探究(三)应用举例(四)反馈练习(五)归纳小结(六)布置作业,六个教学环节构成。

(一)复习引入:

1.从函数观点看,数列可看作是定义域为__________对应的一列函数值,从而数列的通项公式也就是相应函数的______ 。(N*;解析式)

通过练习1复习上节内容,为本节课用函数思想研究数列问题作准备。

2. 小明目前会100个单词,他她打算从今天起不再背单词了,结果不知不觉地每天忘掉2个单词,那么在今后的五天内他的单词量逐日依次递减为: 100,98,96,94,92 ①

3. 小芳只会5个单词,他决定从今天起每天背记10个单词,那么在今后的五天内他的单词量逐日依次递增为 5,10,15,20,25 ②

通过练习2和3 引出两个具体的等差数列,初步认识等差数列的特征,为后面的概念学习建立基础,为学习新知识创设问题情境,激发学生的求知欲。由学生观察两个数列特点,引出等差数列的概念,对问题的总结又培养学生由具体到抽象、由特殊到一般的认知能力。

(二) 新课探究

1、由引入自然的给出等差数列的概念:

如果一个数列,从第二项开始它的每一项与前一项之差都等于同一常数,这个数列就叫等差数列, 这个常数叫做等差数列的公差,通常用字母d来表示。强调:

① “从第二项起”满足条件;

②公差d一定是由后项减前项所得;

③每一项与它的前一项的差必须是同一个常数(强调“同一个常数” );

在理解概念的基础上,由学生将等差数列的文字语言转化为数学语言,归纳出数学表达式:

an+1-an=d (n≥1)

同时为了配合概念的理解,我找了5组数列,由学生判断是否为等差数列,是等差数列的找出公差。

1. 9 ,8,7,6,5,4,……;√ d=-1

2. 0.70,0.71,0.72,0.73,0.74……;√ d=0.01

3. 0,0,0,0,0,0,…….; √ d=0

4. 1,2,3,2,3,4,……;×

5. 1,0,1,0,1,……×

其中第一个数列公差<0,>0,第三个数列公差=0

由此强调:公差可以是正数、负数,也可以是0

2、第二个重点部分为等差数列的通项公式

在归纳等差数列通项公式中,我采用讨论式的教学方法。给出等差数列的首项,公差d,由学生研究分组讨论a4 的通项公式。通过总结a4的通项公式由学生猜想a40的通项公式,进而归纳an的通项公式。整个过程由学生完成,通过互相讨论的方式既培养了学生的协作意识又化解了教学难点。

若一等差数列{an }的首项是a1,公差是d,

则据其定义可得:

a2 - a1 =d 即: a2 =a1 +d

a3 – a2 =d 即: a3 =a2 +d = a1 +2d

a4 – a3 =d 即: a4 =a3 +d = a1 +3d

……

猜想: a40 = a1 +39d

进而归纳出等差数列的通项公式:

an=a1+(n-1)d

此时指出:这种求通项公式的办法叫不完全归纳法,这种导出公式的方法不够严密,为了培养学生严谨的学习态度,在这里向学生介绍另外一种求数列通项公式的办法------迭加法:

a2 – a1 =d

a3 – a2 =d

a4 – a3 =d

……

an – an-1=d

将这(n-1)个等式左右两边分别相加,就可以得到 an– a1= (n-1) d即 an= a1+(n-1) d (1)

当n=1时,(1)也成立,

所以对一切n∈N*,上面的公式都成立

因此它就是等差数列{an} ……此处隐藏6650个字……合并同类项一般步骤:

6xy-10x2-5yx+7x2———找

=(6xy-5yx)+(-10x2+7x2)———移

=(6-5)xy+(-10+7)x2———并

=xy-3x2

尝试训练一:

(1)3x-8x-9x

(2)5a2+2ab-4a2-4ab

(3)2x-7y-5x+11y-1

尝试练习二:

当x=2,y=3时

求多项式 的值。

对比计算:同桌采用两种不同的方法来计算,以得出较优化的方法——先化简,再求值。

例题:已知a=,b=4,

求多项式2a2b-3a-3a2b+2a的值.分解难度,设计过渡问题,使学生能自然的感受法则的探索过程。

以一道例题的训练为桥梁来得出合并同类项的一般步骤。体现新课程中以学生为主,注重学生参与的理念。

小组共练互批,及时纠错,共同提高。

求多项式的值,常常先合并同类项,化简后再求值,这样比较简便。

数学与生活:

某住宅的平面结构如图所示(墙体厚度不计,单位:米)

(1)该住宅的使用面积是多少平方米?

(2)房的主人计划把住宅的地面都铺上地砖,若选用的地砖的价格是30元/平方米,其中x=4,y=3那么买地砖至少需要多少元?

谈一谈:通过本课的学习你有何收获?

课堂感悟:

1、什么叫合并同类项?

把多项式中的同类项合并成一项,叫合并同类项

2、合并同类项的法则是什么?

把同类项的系数相加,所得结果作为系数,字母和字母的指数不变

必做题:

1、在下列代数式中,指出哪些是同类项。2x2,0,-3x,-x2y,(x+y)2,xy2,x2y,6x,-x2y,0.5,-x2,2(x+y)2;

2、合并同类项

①3y+2y ②3b-3a3+1+a3-2b

③2y+6y+2xy-5 ④6mn+4m2n-3mn+5mn2

3、填充:(1)在()内填上相应字母,使得2()3()2与5x2y3是同类项;(2)若x3ym和xny2是同类项,则=;(3)若(n-3)x2yz和x2yz是同类项,则;

选做题:你会玩下面的两个数字游戏吗?游戏步骤:任写一个两位数交换十位和个位数,得到一个新两位数求这两个两位数的和。做完后观察结果,你发现了什么?这个规律对任何一个两位数都成立吗?如果成立,如何说明呢?你能自编一个数学游戏吗?这个游戏有什么特点?与同伴一起玩这个游戏。通过对熟悉的事物,让学生感受到数学就在身边,激发学生想象力,启迪创新,应用意识。

小组讨论

进一步让学生巩固基本知识,渗透数学分类思想;使知识结构更完善。

必做题进一步巩固学生所学知识,及时发现和弥补知识缺陷,起到课后巩固和反馈作用。在第二项作业中利用游戏为下面的学习埋下了伏笔,这样就可以激发学生想象力,启迪创新,应用意识。

数学说课稿 篇5

一、说教材

《算术平方根》是人教20xx版七年级数学第六章实数的第一节内容。本节课学习第一个课时----算术平方根,是学习实数的准备知识,为学习二次根式作铺垫,提供知识积累。

二、说教学目标

结合着七年级学生的认知结构及其心理特征,我制定了以下的教学目标:

1.让学生理解算术平方根的概念,正确的读写有关算术平方根的式子,会用平方运算求完全平方数的算术平方根。

2.让学生经历从实际例子归纳出算术平方根概念的过程,理解概念的本质。

三、说教学的重难点

教学重点:算术平方根的概念

教学难点:掌握算术平方根的概念和性质、能正确求出完全平方数的算术平方根及利用双重非负性解决问题

四、说学情

1、学生现有基础:学生在上学期时已学过了乘方的运算,有助于本节的学习活动。

2、学习的现状:此阶段的学生对新鲜事物或新内容特别感兴趣,但缺乏学习的方法。

五、说教法与学法

教法:以前学生虽然学过乘方运算,但由于间隔时间过长,他们会有不同程度的遗忘,甚至有些概念已没了印象,同时也为了实现新旧教学方式和学习方式的接轨,结合本课特点,我采取以下教学方法:(1)情境教学法:(2)对比教学法:把二次方与算术平方根的概念,计算过程等对比起来进行教学,降低了学生的学习难度。

学法:小组交流合作法和自主学习法.把过程还给学生,让过程与结果并重。

六、教学程序:

本节课的主要流程为:

预习新知、激趣引入→新知探究、合作交流→巩固练习、强化认识

(一)、预习新知、激趣引入

由画布问题引出算术平方根的概念:如果一个正数的平方等于a,即2=a,那么这个正数x就叫做a的算术平方根。这样的设计,其目的是通过表格填空,与正数的平方比较引出算术平方根的概念,沟通二者之间的关系,培养学生的逆向思维能力。

(二)、新知探究合作交流

这一环节是整节课的重点环节,引导学生对算术平方根的概念和性质进行了探究,在此基础上掌握a的算术平方根的表示方法及被开方数a的限制。

(三)、巩固练习、强化认识

由于学生还不熟算术平方根的表示方法,所以在书写时尽量规范。对算术平方根的读记练习,让学生通过具体的事例明白各式所()表示意义,亲自操作,进而总结归纳,共享经验,提高学生的语言表达能力。

在对本节课进行归纳总结时重点围绕以下问题:1、什么是一个非负数的算术平方根?2、正数、0的算术平方根有什么规律?3、怎么样求一个数的算术平方根?正数a的算术平方根怎么表示?

(四)、板书设计

6.1算术平方根

投影课文画布问题及表格

1、算术平方根的概念例1学生

2、算术平方根的表示方法例2演板

3、算术平方根的性质例3

七、设计说明:

11、指导思想:

依据学生已有的基础及教材所处的地位和作用,在教学中让学生在学习知识技能的同时,注意数学思想方法和良好学习习惯的养成。

2、关于教法和学法采用启发式教学法及情感教学,创设问题情境,引导学生主动思考,激发学生兴趣,调节学习情绪,让学生在乘方和算术平方根的性质法则的比较中发现问题;在练习训练中提高解题能力,培养良好学习习惯。同时,采用媒体辅助教学,增大教学密度,提高教学效率。

3、关于教学程序的设计

在教学程序设计上,充分体现教师为主导,学生为主体的教学原则,突出以下几个注重:

①面向全体学生,启发式与探究式教学。

②注重学生参与知识的形成过程,增强学习数学的信心。

③让学生在获取知识的同时,掌握方法,灵活运用。

《【推荐】数学说课稿集锦5篇.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式