实用的数学说课稿初中范文汇总五篇
作为一名老师,就难以避免地要准备说课稿,说课稿有助于顺利而有效地开展教学活动。那么你有了解过说课稿吗?以下是小编为大家收集的数学说课稿初中5篇,欢迎大家借鉴与参考,希望对大家有所帮助。
数学说课稿初中 篇1一、说教学理念:
数学是人与人之间精神层面上进行的交往。课堂教学中的交往主要是教师与学生、学生与学生之间的交往。它需要运用“对话式”的学习方式,采取多种教学策略,使学生在合作、探索、交流中发展能力。新课程中对学生的情感、体验、价值观,以及获取知识的渠道都有悖于传统的教学模式,这正是教师在新课程中寻找新的教学方式的着眼点。应该说,新的教学方式将伴随着教师对新课程的逐渐透视而形成新的路径。要破除原有教学活动的框架,建立适应师生相互交流的教学活动体系;满足学生的心理需求,实现教者与学者感情上的融洽和情感上的共鸣;给学生体验成功的机会,把“要我学”变成“我要学”。
我认为教师角色的转变一定会促进学生的发展、促进教育的长足发展,在未来的教学过程里,教师要做的是:帮助学生决定适当的学习目标,并确认和协调达到目标的最佳途径;指导学生形成良好的学习习惯,掌握学习策略;创造丰富的教学情境,培养学生的学习兴趣,充分调动学生的学习积极性;为学生提供各种便利,为学生的学习服务;建立一个接纳的、支持性的、宽容的课堂气氛;作为学习的参与者,与学生分享自己的感情和想法;和学生一道寻找真理,能够承认自己的过失和错误。教学情境的营造是教师走进新课程中所面临的挑战,适应新一轮基础教育课程改革的教学情境不是文本中的约定,也不是现成的拿来就能用的,需要我们在教学活动的全过程中去探索、研究、发现、形成。
二、说教材分析与处理:
三角形的内角和定理揭示了组成三角形的三个角的数量关系,此外,它的证明中引入了辅助线,这些都为后继学习奠定了基础,三角形的内角和定理也是几何问题代数化的体现。
三、说学生分析:
处于这个年龄阶段的学生有能力自己动手,在自己的视野范围内因地制宜地收集、编制、改造适合自身使用,贴近生活实际的数学建模问题,他们乐于尝试、探索、思考、交流与合作,具有分析、归纳、总结的能力,他们渴望体验成功感和自豪感。因而老师有必要给学生充分的自由和空间,同时注意问题的开放性与可扩展性。
四、说教学目标:
1.知识目标:在情境教学中,通过探索与交流,逐步发现“三角形内角和定理”,使学生亲身经历知识的发生过程,并能进行简单应用。能够探索具体问题中的数量关系和变化规律,体会方程的思想。通过开放式命题,尝试从不同角度寻求解决问题的方法。教学中,通过有效措施让学生在对解决问题过程的反思中,获得解决问题的经验,进行富有个性的学习。
2.能力目标:通过拼图实践、问题思考、合作探索、组内及组间交流,培养学生的的逻辑推理、大胆猜想、动手实践等能力。
3.德育目标:通过添置辅助线教学,渗透美的思想和方法教育。
4.情感、态度、价值观:在良好的师生关系下,建立轻松的学习氛围,使学生乐于学数学,遇到困难不避让,在数学活动中获得成功的体验,增强自信心,在合作学习中增强集体责任感。
五、说重难点:
1.重点:三角形的内角和定理探究与证明。
2.难点:三角形的内角和定理的证明方法(添加辅助线)的讨论
六、说教法、学法和教学手段
采用“问题情境-建立模型-解释、应用与拓展”的模式展开教学。
采用对话式、尝试教学、问题教学、分层教学等多种教学方法,以达到教学目的。
教学过程设计:
(一)创设情境,悬念引入
一堂新课的引入是老师与学生交往活动的开始,是学生学习新知识的心理铺垫,是拉近师生之间的距离,破除疑难心理、乏味心理的关键。一个成功的引入,是让学生感觉到他熟知的生活,可使学生迅速投入到课堂中来,对知识在最短的时间内产生极大的兴趣和求知欲,接下来教学活动将成为他们乐此不疲的快事了。
具体做法:抛出问题:“学校后勤部折叠长梯(电脑显示图形)打开时顶端的角是多少度呢?一名学生测出了两个梯腿与地面的成角后,立即说出了答案,你知道其中的道理吗?”待学生思考片刻后,我因势利导,指出学习了本节课你便能够回答这个问题了。从而引入新课。
(二)探索新知
1.动手实践,尝试发现:要求学生将事先准备好的三角形纸板按线剪开,然后用剪下的∠A、∠B与完整的三角形纸板中的∠C拼图,使三者顶点重合,问能发现怎样的现象?有的学生会发现,三者拼成一个平角。此时让学生互相观察拼图,验证结果。从观察交流中,互学方法,达到生生互动。待交流充分,分小组张贴所拼图形,教师点评,总结分类,将所拼图形分为∠A、∠B分别在∠C同侧和两侧两种情况。对有合作精神的小组给与表扬。
(将拼图展示在黑板上)
2.尝试猜想:教师提问,从活动中你有怎样的发现?采取组内交流的方式,产生思维碰撞。此时我走到学生中去,对有困难的小组给与适当的引导。之后由学生汇报组内的发现。即三角形三个内角的和等于180度。
3.证明猜想:先帮助学生回忆命题证明的基本步骤,然后让学生独立完成画图、写出已知、求证的步骤,其他同学补充完善。下面让学生对照刚才的动手实践,分小组探求证明方法。此环节应留给学生充分的思考、讨论、发现、体验的时间,让学生在交流中互取所长,合作探索,找到证明的切入点,体验成功。对有困难的学生要多加关注和指导,不放弃任何一个学生,借此增进教师与学有困难学生之间的关系,为继续学习奠定基础。合作探究后,汇报证明方法,注意规范证明格式。此处自然的引入辅助线的概念。但要说明,添加辅助线不是盲目的,而是为了证明某一结论,需要引用某个定义、公理、定理,但原图形不具备直接使用它们的条件,这时就需要添辅助线创造条件,以达到证明的目的。
4.学以致用,反馈练习
(1)在△ABC中,已知∠A=80°,能否知∠B+∠C的度数?
解:∵∠A+∠B+∠C=180°(三角形内角和定理)
∴∠B+∠C=100°在△ABC中,
(2)已知:∠A=80°,∠B=52°,则∠C=?
解:∵∠A+∠B+∠C=180°(三角形内角和定理)
又∵∠A=80°∠B=52°(已知)
∴∠C=48°
(3)在△ABC中,已知∠A=80°,∠B-∠C=40°,则∠C=?
(4)已知∠A+∠B=100°,∠C=2∠A,能否求出∠A、∠B、∠C的度数?
(5)在△ABC中,已知∠A:∠B:∠C=1:3:5,能否求出∠A、∠B、∠C的度数?
解:设 ……此处隐藏8243个字……这是本节课重点知识的应用。
例题1 已知平行四边形ABcD的三个顶点A、B、c的坐标分别是A(—2,1),B(—1,3),c(3,4),求顶点D的坐标。
例题1有多种解法,除了课本中给出的由向量线性运算的几何形式向代数形式转化的方法,还可以利用向量=或=列方程求解,也可以利用线段Ac、BD的中点E的向量表达式进行等量转化以求出D点的坐标。但不论哪一种解法都用到了一个很重要的数学方法──数形结合。
讲这个题时,我板书采用的是课本给出的方法,目的是引导学生熟练地转化向量线性运算的几何形式和代数形式,其他的方法则只是给予提示,给学生留出空间,开阔思路,培养学生的发散思维能力。
通过例题1让学生深刻理解向量的直角坐标运算,亲身体会“数缺形时少直观,形少数时难入微,数形结合百般好,隔离分家万事非”(华罗庚语)。从而提高学生利用数形结合的方法解决实际问题的能力。
练习5已知A(—2,1),B(1,3),求线段AB中点m和三等分点P、Q的坐标。
练习5是例题1的进一步深入,学生以小组讨论的形式,采用多种方法解题,教师以巡视的方式进行个别引导,并让有不同解法的学生上黑板演示,让学生动手实践、自主探索、合作交流,围绕中心各抒己见,把思路方法弄清。
通过这个练习,学生可以更熟练地掌握向量直角坐标运算的应用,并使集体智慧个人化,书本知识灵活化,同时培养学生独立思考的能力和团结协作的精神。
(四)小结
为了让学生将获得的知识进一步条理化、系统化,同时培养学生归纳总结的能力及练习后进行再认识的能力,引导学生对本节课进行总结:
向量的直角坐标运算使向量运算完全数量化,将数与形紧密地结合起来,这样很多的几何问题就可以通过“数形结合”的方法转化为大家熟悉的数量的运算。
(五)布置作业
为了让学生进一步巩固本节课内容,提高自觉学习的能力,我布置作业如下:
1、课本第186页:练习A1(1)、2(1);练习B 1、2。
2、思考题:3a与a的坐标有什么关系?位置有什么特点?
A组的题用来巩固向量的直角坐标运算,B组的题则让学生进一步掌握向量直角坐标运算的应用,思考题又为下一节课的内容埋下伏笔。
(六)板书设计
在黑板中上方书写完课题后,将版面分为四部分,从上而下,自左向右,按授课顺序书写授课内容,达到清晰、条理、有序的目的。板书内容如下:
课题:6、2、2 向量的直角坐标运算
问题1练习1 例1 练习5
结论1练习2
问题2练习3
结论2练习4
本节的说课内容到此结束,谢谢大家。
数学说课稿初中 篇5一、说教材
1.说课内容:
北师版三年级下册第二单元《对称、平移和旋转》中的第一课时的教学内容。
2.教材的地位和作用:
对称是一种最基本的图形变换,对于帮助学生建立空间观念,培养学生的空间想象能力有着不可忽视的作用,同时对称在自然界和日常生活中具有很重要的作用。教材结合欣赏民间艺术的剪纸图案,以及服饰、工艺品与建筑等图案,让学生感知现实世界中普遍存在的轴对称现象,让学生体会轴对称图形的特征,为今后进一步学习对称图形做准备。
3.教学目标:
(1)了解生活中的对称现象,体会轴对称图形的特征,能正确识别轴对称图形,能在方格纸上画出简单图形的轴对称图形。
(2)通过观察、猜想、验证、操作,经历认识轴对称图形的过程,培养学生动手、创新等能力。
(3)在认识、制作和欣赏轴对称图形的过程中,感受物体或图形的对称美,培养学生的审美情趣。
4.教学重点:
认识轴对称图形的基本特征。
5.教学难点:
制作轴对称图形。
二、说教法
根据本节教材内容和编排的特点,为了更有效地突出重点,突破难点,以学生的发展为本,采用了以探究发现法为主,直观演示法、设疑诱导法为辅的教学方法。教学中,精心设计带有启发性和思考性的问题,激发学生探求知识的欲望,逐步推导归纳出结论,培养学生的思维能力。
三、说学法
为了落实新课标的理念,在本节课的教学中体现了动手实践、自主探索与合作交流的学习方式,为了让学生充分体验到轴对称图形的特征,安排了玩一玩、折一折、剪一剪、画一画等一系列有趣的实践活动,为学生提供了充足的学习素材,创设了较宽松的学习空间,经历了知识的形成过程。
四、说教学过程
(一)玩对称,激趣引入
课始,老师一句:给你一张纸,你会怎么玩?一个玩字就把学生的兴趣调动起来了,接着老师的撕纸表演,作品小衣服的亮相,更是把学生的兴趣推到了极致!你会象老师这样玩吗?话音刚落,孩子们就迫不及待地开始了折纸和撕纸。灵巧的小手把一张张白纸变成了一个个美丽的图形,争先恐后地将作品贴到黑板上。这样的新课导入,抓住了孩子们好动爱玩的年龄特点,通过撕纸这一操作活动,让学生目之所及,手之所触,都是美丽的轴对称图形,从直观上引发出对称之美,课堂教学随之直奔学习主题。
(二)识对称,体悟特征
1.找特征,初识轴对称图形(作品)
结合学生的撕纸作品,师一句:这些图形有相同的地方吗?找准了学生的认知起点,学生通过观察、比较,很快就发现了其中的奥秘:这些图形左右两边形状相同,对折后会完全重合。在此基础上我巧妙地引入轴对称图形这一概念,接着从轴字出发,引导学生认识轴对称图形的对称轴。
2.验特征,再识轴对称图形(图片)
出示图片,它们是轴对称图形吗?你有什么办法来验证?抓住了学生好胜的特点,学生很快就想到用对折的办法验证了自己的说法;这一环节加深了学生对轴对称图形的认识。
3.辨特征,找出真假轴对称图形(课件)
赏心悦目的练习面画,增强了学生思考的主动性;练习的层次性,促进了学生对知识的内化。
(三)做对称,深化体验
1.猜一猜:(出示轴对称图形的一半)这是什么?(学生充满自信地猜测着,猜到最后一个,打开后居然不是同学们异口同声猜出的花瓶。)在学生的惊讶中,老师趁势启发学生:想一想,花瓶的另一半形状和大小会是怎样呢?你能想办法剪出这只完整的花瓶吗?
2.剪一剪:小组合作完成花瓶图,全班交流时着重引导学生说一说制作的方法,并给予激励性评价。
3.画一画:你想自己做一个轴对称图形吗?全班交流时鼓励学生说出他们画图形的窍门。
此环节的设计,旨在让学生带着知识走进实践,不着痕迹地得出了制作轴对称图形的方法,主张通过实践使学生学会运用知识,发展思维。
(四)赏对称,提升认识
由轴对称图形,进而拓展到现实生活中的轴对称现象。引导学生通过赏析,感受大自然的美妙与神奇,并进一步拓宽学生的视野,受到美的熏陶,感受数学与生活的紧密联系。